Skip to main content

Dark Matter Dominates In Nearby Dwarf Galaxy ( Source- Eurasia Review)

Image credits- Wikimedia Commons / ESO

Dark matter is called “dark” for a good reason. Although they outnumber particles of regular matter by more than a factor of 10, particles of dark matter are elusive. Their existence is inferred by their gravitational influence in galaxies, but no one has ever directly observed signals from dark matter. Now, by measuring the mass of a nearby dwarf galaxy called Triangulum II, Assistant Professor of Astronomy Evan Kirby may have found the highest concentration of dark matter in any known galaxy.

Triangulum II is a small, faint galaxy at the edge of the Milky Way, made up of only about 1,000 stars. Kirby measured the mass of Triangulum II by examining the velocity of six stars whipping around the galaxy’s center.

“The galaxy is challenging to look at,” he said. “Only six of its stars were luminous enough to see with the Keck telescope.” By measuring these stars’ velocity, Kirby could infer the gravitational force exerted on the stars and thereby determine the mass of the galaxy.

“The total mass I measured was much, much greater than the mass of the total number of stars–implying that there’s a ton of densely packed dark matter contributing to the total mass,” Kirby said. “The ratio of dark matter to luminous matter is the highest of any galaxy we know. After I had made my measurements, I was just thinking–wow.”

Triangulum II could thus become a leading candidate for efforts to directly detect the signatures of dark matter. Certain particles of dark matter, called supersymmetric WIMPs (weakly interacting massive particles), will annihilate one another upon colliding and produce gamma rays that can then be detected from Earth.

While current theories predict that dark matter is producing gamma rays almost everywhere in the universe, detecting these particular signals among other galactic noises, like gamma rays emitted from pulsars, is a challenge. Triangulum II, on the other hand, is a very quiet galaxy. It lacks the gas and other material necessary to form stars, so it isn’t forming new stars–astronomers call it “dead.” Any gamma ray signals coming from colliding dark matter particles would theoretically be clearly visible.

It hasn’t been definitively confirmed, though, that what Kirby measured is actually the total mass of the galaxy. Another group, led by researchers from the University of Strasbourg in France, measured the velocities of stars just outside Triangulum II and found that they are actually moving faster than the stars closer into the galaxy’s center–the opposite of what’s expected. This could suggest that the little galaxy is being pulled apart, or “tidally disrupted,” by the Milky Way’s gravity.

“My next steps are to make measurements to confirm that other group’s findings,” Kirby said. “If it turns out that those outer stars aren’t actually moving faster than the inner ones, then the galaxy could be in what’s called dynamic equilibrium. That would make it the most excellent candidate for detecting dark matter with gamma rays.”

original article was published here @ Eurasia Review

Comments

Popular posts from this blog

Strategic Vanguard blog is moving to a new website, our new home

  Thank you for your continued interest in Strategic Vanguard. This blog—**strategicvanguard.blogspot.com**—served as an early platform for sharing curated and syndicated content related to global affairs, strategy, and defense. However, this space is no longer updated and is maintained only as an archive. We’ve Moved! Strategic Vanguard Now Has a New Home with Original Blogs, Podcasts & More. This move helps us bring you faster, richer, and 100% original content, without the limitations of legacy platforms like Blogger. --- ✅ **Visit Our Official Website for Fresh, Original Content:**  🌐  https://www.strategicvanguard.com 🌐 https://www.strategicvanguard.com/blog 🌐  https://www.strategicvanguard.com/podcast 🎥 **Subscribe to Our YouTube Channel:** ▶️ https://www.youtube.com/@StrategicVanguard 📬 **For Updates, Podcasts, and Articles:** 📰 Visit the blog and podcast sections at the official site. We are also available in the following social media p...

The Rise and Challenges of the Chinese Navy

The Indian Navy- Protectors of the Seas

  The Strength of the Indian Navy: Navigating Towards Global Maritime Excellence The Indian Navy, a pivotal arm of India's armed forces, plays a crucial role in ensuring maritime security and projecting power in the Indian Ocean region and beyond. With a rich history and a forward-looking strategy, the Indian Navy stands as a testament to India's growing naval prowess and strategic vision. Here’s a closer look at the strength and capabilities that define the Indian Navy today. 1. Historical Legacy and Modernization The Indian Navy's origins trace back to the early 17th century when the Maratha Empire established its naval forces. However, the modern Indian Navy was formally established on October 4, 1950. Over the decades, it has evolved from a modest coastal defense force to a formidable blue-water navy capable of projecting power globally. Modernization has been at the core of its growth, with significant investments in new technologies, ships, submarines, and aircraft. 2...